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Second order accurate (first order at extrema) cell averaged based approximations
extending the Lax—Friedrichs central scheme, using component-wise rather than
field-by-field limiting, have been found to give surprisingly good results for a wide
class of problems involving shocks (see H. Nessyahu and E. Tadm@omput.
Phys.87, 408, 1990). The advantages of component-wise limiting compared to its
counterpart, field-by-field limiting, are apparent: (1) No complete set of eigenvectors
is needed and hence weakly hyperbolic systems can be solved. (2) Component-
wise limiting is faster than field-by-field limiting. (3) The programming is much
simpler, especially for complicated coupled systems of many equations. However,
these methods are based on cell-averages in a staggered grid and are thus a bit
complicated to extend to multiple dimensions. Moreover the staggering causes slight
difficulties at the boundaries. In this work we modify and extend this component-
wise central differencing based procedure in two directions: (1) Point values, rather
than cell averages are used, thus removing the need for staggered grids, and also
making the extension to multi-dimensions quite simple. We use TVD Runge—Kutta
time discretizations to update the solution. (2) A new type of decision process, which
follows the general ENO philosophy is introduced and used. This procedure enables
us to extend our method to a third order component-wise central ENO scheme,
which apparently works well and is quite simple to implement in multi-dimensions.
Additionally, our numerical viscosity is governed by the local magnitude of the
maximum eigenvalue of the Jacobian, thus reducing the smearing in the numerical
results. We found a speed up of a factor of 2 in each space dimension, on@SGI
workstation, over methods based on field-by-field decomposition limiting. The new
decision process leads to new, “convex” ENO schemes which, we believe, are of
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interest in a more general setting. Our numerical results show the value of these new
methods. © 1998 Academic Press

1. INTRODUCTION

Essentially non-oscillatory (ENO) schemes as developed in [6] and modified in [19] fo
a general method for solving systems of hyperbolic conservation laws in several spac
mensions. The goal is high order accuracy in smooth regions, without significant spuri
oscillations near jumps, done within a conservation form setting. The original method
developed in [6] used the natural cell average based formulation. This was modified in |
using a conservation form approximation to point values, and was implemented dimen:
by dimension iotby dimensional splitting). The original method advocated a rather con
plicated time discretization based on replacing time derivatives by space derivatives.
modification in [19] used any of a class of simple TVD Runge—Kutta time discretizatior
developed for that purpose in [18], thus separating out the space and time derivatives.

The most intimidating and expensive part of ENO (and other high resolution methc
such as 2nd order TVD) is the field-by-field decomposition in which the Jacobian matric
are somehow diagonalized locally, interpolation (or limiting) is done in each eigenspa
and the numerical fluxes are reassembled out of these components. In [6] the field
field decomposition was strongly advocated. Significant oscillations were obtained in a:
example Riemann problem which used component-wise reconstructions.

The advantages of component-wise limiting compared to its counterpart, field-by-fi
limiting, are apparent: (1) No complete set of eigenvectors is needed and hence we
hyperbolic systems can be solved. (2) Component-wise limiting is faster than field-by-fi
limiting (in our numerical tests we found that component-wise limiting is 2 times fast
than field-by-field limiting ineachdimension). (3) The programming is much simpler for
complicated coupled systems of many equations. In [15, 10] second order accurate |
order at extrema) sequels to the canonical first-order central difference scheme, the |
Friedrichs scheme, using component-wise limiting were found to give surprisingly go
results. The oscillations were typicaly (1), but very small. These methods were baset
on a cell average on a staggered grid and were, therefore, a bit complicated to exter
two space dimensions. Moreover boundary conditions posed a slight difficulty due to
staggering. A third order cell average based scheme of this type, using a non-oscilla
reconstruction from [12] was obtained in [13]. We also note that the relaxing method
[11] is close to the second order accurate component-wise scheme in [15].

Drawing on the above authors’ very positive experience with component-wise cent
high resolution schemes based on cell averages, we attempt here to modify and exten
procedure in two directions. (1) Point values rather than cell averages are used, thus remc
the need for staggered grids and making the extension to multi-dimensions quite sin
via the TVD Runge—Kutta time discretization. (2) A new type of decision within the EN
philosophy is introduced and used below. This enables us to extend our pointwise sec
order central scheme to a third order component-wise central essentially nhon-oscilla
scheme which apparently works well and is simple to implement in multi-dimensior
Of course this new type of decision also works well under a field-by-field decompositi
framework. Additionally, our numerical viscosity may be governed by the local magnitu
of the maximum eigenvalue determined locally. Thus, our schemes should have the sme
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possible viscosity within this central scheme framework. We note that H. Choi and J. Liu
have also used component-wise limiting in a flux-split second order context. Our sche
differ from theirs as follows: (1) We proceed to third order accurate methods using
convex ENO idea presented in Section Il below. (2) Their interesting and new limiti
procedure is such that their flux does not degenerate to a formally first order acct
method at discontinuities for their (second order) method. Ours does, and this accoun
our less oscillatory results, even for our third order method.

The format of this paper is as follows. In the next section we describe the very sin
new second order (perhaps first order at extrema) component-wise point value schen
Section Il we describe our new ENO like decision process and then use it to devise
third order accurate essentially non-oscillatory component-wise central scheme. We
this decision process convex ENO. We expect this idea to be useful elsewhere. Fir
in Section IV, we present numerical examples showing the utility of our new and sim
methods for both component-wise and field-by-field decomposition implementations.

We believe that a component-wise scheme will perform well only if the flux is close
that of a field-by-field scheme. Of course, in regions of smoothness, formal truncation ¢
analysis implies that this is true. However, near discontinuities, the flux must be close
flux which does not mix the fields. Owonvex ENO philosophystay as close as possible
to a second order TVD (or UNO) flux which degenerates to first order at discontinuiti
while maintaining formal higher order accuracy—is designed to do this.

2. A SECOND ORDER ACCURATE MULTI-DIMENSIONAL HIGH
RESOLUTION SCHEME WITHOUT FIELD-BY-FIELD
DECOMPOSITIONS OR STAGGERED GRIDS

We follow the derivation in [19] with one major and obvious change, which is qui
significant (see the Acknowledgments) in the absence of the field-by-field decomposit

Our set up is as follows.

We shall solve the hyperbolic system of conservation laws

G+ fi(@yx =0 (org(u, x,t), aforcing term @
q(x, 0) = do(x).
Hereq=(q,...,qn)", x=(x%, ..., x%), and any real linear combination of the Jacobia

matriceszid:l & (%) has only real eigenvalues.

The firstand second order accurate schemes used below all have the usual theoretic
tification in the scalar case. Namely the first order schemes based on monotone or E sc
building blocks converge in multi-dimensions to the correct entropy satisfying soluti
The second order TVD based schemes satisfy a maximum principle in multi-dimens
and are variation non-increasing in one dimension (except when the “UNO” limiter of [7
used—then we are only assured that the number of extrema is non-increasing). The
are routine by now and omitted here—see, e.g., [16, 7] and the references therein. The
and higher order ENO based schemes have no rigorous theory but work well in pra
[6, 19]. Finally we note that the entropy condition can be proven easily for the first or
versions for systems of equations which admit a convex entropy.

On the computational gridy; = j AX, th =nAt, we useq]' to denote the computed
approximation to the exact solutiay(x;, tn).
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We begin our discussion with the one space dimension, scalar case.
We shall always use conservative schemes of the form

At

at=al —a(fiy - i), A= (2)
with a consistent numerical flux
fio=f@....q0,  f@....0="fa@. €)

We start with a simple first order monotone Lax—Friedrich type of central scheme, a:
[19]. We define

fr @ = %(f(q)+aq), f‘(q)=%(f(q)—aq>, (4)
wherea > max f’(q)|. We have
ff@=0  f(@=0 ()
fr@+ (@ = f@. (6)
The Lax—Friedrichs scheme is simply (2) with
o= + ©)
wheref” = f*(q;) and f; = f(qj41).
Notice that the dissipatiom is independent oAt (and does not blow up ast | 0) in

contrast to the staggered grid version.
An alternative, less dissipative, type of central scheme is obtained by defining

1
(f@+ej30),  fLu@=5(f@ —aj0), (8)

NI =

+ _
where

= max [f'(q)] ()]

min(g;j,dj+1)<q<max(d;,d;+1)

%j+3

and the analogue of (6) is valid.
Note that if f”(q) # 0, on the interval above, then

aj 1 =max| (@)l [ f(qj+0)D. (10)

The local Lax—Friedrichs scheme is defined to be (2) with

FLLF —
Fies = fl @)+ 1,1 @p). (11)

This is also a monotone scheme [19].

Clearly, other possible candidates toy.1/>, exist—one might search in a full multi-
dimensional interval and use the maximum eigenvalues of the corresponding Jaco
matrices to estimate the viscosity coefficient—see, e.g., [14].
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Next we review and modify our procedure for constructing second order ENO scher

As defined in [19, Algorithm 2.2r = 1] the numerical flux corresponding to each of
f*(q) comes from differentiating a quadratic interpolant of the primitive function (agz
see [19]). The interpolant is chosen to be the one which has the smaller (in magnit
second derivative of two candidates. The (ENO) motivation for this choice was that choo
one or the other enables us to proceed to a higher degree polynomial, hence higher
accurate flux, in an hierarchical fashion. If we stop at a second order accurate level,
although this decision results (for scalars) in a non-oscillatory, in fact, TVD scheme, itle
to problems (oscillations) when used in a component-wise fashion. The main proble
that the numerical flux doesot degenerate to the associated first order fﬁﬁ;z; at
discontinuities. Thus fields do mix, unlike in the first order Lax—Friedrichs case. This le
us to a (trivial to implement) change in the flux for our second order accurate method.

The standard second order ENO LLF flux is defined by

LR 1
fiii = E(f(qj+l)+ f (@) — e 3@+1—0))
1
+Zm[A+f(qj)+aH%A+qj,A—f(QJ)+“j+§A—qJ'] (12)

1
- Zm[A+ f(@j11) — oy 1A G541, AT (Qj40) — O‘j+%quj+l]9

where
Aspj = £(pj+1 — Pj) (13)
and
x if x| <1yl
m(x, y) = { _ (14)
y otherwise

The usual second order TVD flux is exactly the same as (12) except that we raplac
by a Lipschitz continuous function which degenerates to zero when the two argument
of opposite sign. See, e.g., [20] for an analysis of these (classical) TVD limiters.

The canonical example is the minmod limiter :

(signx) min(|x|, |y|) if xy>0

mm(x, y) = 15
mx. ) {0 otherwise (13)

An alternative way of writing the flux with general limiters following the notation o
[20]is

iz 1
fia1 = E(f(qurl) + £(@) — o), 1@j+1—a)

1
+ 2 [@(rr) (A+ f(@) + Olj+%A+Qj) — o) (A+ f(dj+1) — “j+%A+QJ+1)]7
(16)
where
o (A_f@) +oj1A-0))
. (AL f(p +Olj+%A+Qj)

17)
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(A-f(@j+1) — @ 1A _Qj41)

ro,= z . (18)
i+ <A+ f(dj+1) — o1 A+Qj+l)
For the limiterm defined in (4) we have
1 ifl<|r|
#m(T) = {r otherwise (19)

This limiter does not vanish if < 0; this (together with the discontinuityat= — 1) proves
disastrous in the absence of field-by-field limiting.
The scheme usingimcorresponds to

@mm(r) = max©O, min(r, 1)). (20)
This is the least compressive, most smearing, and most reliable limiter (least likely to ind
oscillations in a component-wise framework).
The most compressive TVD limiter, due to P. Roe is called superbee and corresponc
@sp(r) = max0, min(2r, 1), min(r, 2)). (22)
Finally, a very good compromise between these two is due to van Leer

r=+|rf
1+]r|

puL(r) = (22)

All of the schemes corresponding to thesare second order TVD and hence degenerat
to first order at smooth extrema (and discontinuities, of course).

Harten and Osher began their construction of ENO schemes in [7], replacing the T’
condition with the uniformly non-oscillatory (UNO) notion—thmumberof extrema is
non-increasing. The resulting scheme involves minmods, so it degenerates to first o
accuracy at discontinuities, but not at smooth extrema. In the present context, the flux u
the UNO limiter is

LLF,2
f--7=

1
. (f@j+0) + f(a) — @jy1(Qj41 — aj)) + mel:AJrf(q]) +aj 1440

NI =

- %mm[AJrA— f@) +aj 1ALA g, ALA_T(Qj10) + Olj+%A+A—CIj+1},
A_f(@) +oj1A-0; + %mm[A+A_f(qj_1)+ai+%A+A_qj_1,
AyA_f()) +Olj+%A+AQJ]] - %mm[A+f(qj+l) — o 1 AL0j4

- %mm[AJFA,f(qu) — o 1 ALA 11, ALA_T(G)42)

1
— o 1A A _Gjao], A-F(@j) — o) 1 A_Qja+ Emm[A+A_ f(a))

—aj 1ALA Q) AL AL f(dj+1) — Olj+%A+A—q1‘+1]]‘ (23
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The second order accurate fluxes corresponding to the LF scheme are denﬁttéfl/@s
(differing from LLF only in the replacement af; ;1,> by a fixed sufficiently large constant).
We denote the flux by using the limiter and the choice LLF or LF as

cLLEmm cLF,uno

figz. fiie (24)

Next we turn to systems of conservation laws. At this point the reader is usually adv
to compute eigenvalues and left and right eigenvectors of the Jacobian matrix at <
intermediate point. Instead, we need only an upper bound of the magnitude of the lal
eigenvalue, either for at] in the range of values taken on at a given time level (for LF),
for all g such that each component lies in the range of values between the componer
gj, andqj1 (for LLF).

Then our scheme is easily constructed. Having picked the constanb, we simply
interpret all of our flux formulae (16)—(24) component by component witlstmer; 11,2
for each component.

Thus we have constructed our flux for systems of conservation laws in one dimension
multi-dimensions, we simply do the same thing component-wise for each df the1).

We may now proceed in either of two ways:

(A) For a second order accurate method we denote our approximation by

d
D (i@ = —(La@). (25)
i=1

Then we use the two step TVRK method (which is just the classical Heun's methoc
to update this:

q? =q"+ AtLa(g")

qn-'rl — 1' (26)

At
5 (A% ") + - La(a®).

(B) For a third order accurate method we use each component of our second ¢
accurate flux, constructed above together with a new ENO like decision, to help const
a simple third order accurate approximation which we again €allA(q)). Then we
use the simple three step TVIRK method developed in [18] to update this in time—se
Eq. (34) in the next section.

3. HIGH ORDER ACCURATE MULTI-DIMENSIONAL ENO SCHEMES
WITHOUT FIELD-BY-FIELD DECOMPOSITION OR STAGGERED
GRIDS, USING A CONVEX ENO DECISION PROCESS

We shall modify the standard ENO process in order to design our new third order sch
The details of this modification as applied to the particular problem at hand may ap
to be complicated, but the new idea is quite simple. To create a higher order accu
essentially non-oscillatory approximation to a function and sample this approximatiot
some derivative of it, proceed hierarchically. Start with a linear approximation. Next take
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usual two candidate quadratic approximations, sample each, take the convex combin:
of the two samples which is closest to the linear sample, then proceed hierarchically.
In the present case, the rules are as follows: Given values of a fundtigh at lat-
tice pointsx = X, we wish to get a high order non-oscillatory approximatiornt@x) at
x = X;j. We start with a linear interpolant at steneil;_1, ;). (This is connected with the
construction of an approximation tb*; the construction forf ~ starts with(x;, Xj11).)
Differentiating this interpolant leads us to the first order approximation
H(Xj) — H(Xj-1)
AX
To proceed and obtain a second order approximation, we consider two quadratic
terpolants which usex;_», Xj_1, Xj) and(Xj_1, Xj, Xj+1), respectively. By differentiating
these two polynomials we get two candidates for the approximation,

HY (x)) ~ =17, 0). 27)

, , Hxj) — HXi—1) 1 /HXj) —2HXj_1) + H(Xj_2)
@' (yiy e 1@ J I = i i i
A o)~ 1=, AX 2 < AX > (28)
, , HX)—HXj—1) 1 /HXjt) —2HXj)+ H(Xi_1)
H® (xj) ~ 12 1) = : AX — - 2 ( - AxJ J ) '
(29

The normal ENO decision would be to choose the “smoother” of the two. All the oth
limiter type decisions would involve picking one of the above, or degenerating to first orc
(at extrema or discontinuities). We propose the following, which is generally slightly diffe
ent: Take the convex combination g’ | ,; (x)). 13 ,(x;) which is closest td 7} ; (x)),
the “monotone” approximation. Interestingly enough, this reduces to the minmod decis
in this case, and generalizes it at a higher order level
A_H (Xj) 1

AX  2A
Thus, we have nothing really new here. However, we go to higher order by storing t
choice and proceeding.

For third order, we select three cubic interpolant$ioht stencilsxj_z, Xj—2, Xj-1, X;),
(Xj—2, Xj—1, Xj, Xj+2), and(Xj_1, Xj, Xj+1, Xj+2), differentiate each of the interpolants, then
evaluate the results afj, and take the convex combination of these numbers which
“closest” toH <2)’(xj). This gives uH <3)’(xj). The “closest” is explained in the next para-
graph.

Inductively, given an(n — 1)st order approximatiord ™=’ (x;), we taken nth order
interpolants oH (x), using(X;j—n, .. ., Xj), (Xj—nt1, - - - » Xj+1) - - (Xj=1, . . ., Xj+n-1). We
getn candidates foH ™'(x;). Denote them byH (™ (xj), v=1, ..., n. Our procedure is
to take the convex combination of theseandidates which is “closest” IH<“*1)’(XJ-) in
the following sense.

H@ (x)) =

an{A_A_H(x,-), ALA_H(X))]. (30)

Convex ENO,
(step 1) Calculatingd, = o, (H™ (xj) — H®"Y (x))) for,v=1...,n
(step 2) If sigrid,) are different thenH ™' (xj) = H" ' (x))
(step 3) Else if d,| < 1r<nvi£1n |d, | thenH ™' (x;) = H{™' (x)),
(31)
where O<a, <1,v=1, ..., nare chosen to bias toward central interpolations to avoid th

loss of accuracy, which is the same technique used in [17].
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This inductive process is uniformly high order accurat@ximally accurateyet de-
generates to agree with a lower order interpolant when appropriate (near wheth the
derivative ofH vanishes, or near its discontinuities).

Next we turn to our construction of high order ENO methods using this approximat
procedure. Following [19], using our new hierarchical process, we easily can build up hi
order schemes in the scalar case using LF or LLF building blocks. Extensions to sys!
and multi-dimensions are routine, as described in the previous section. In this work
proceed as follows.

We begin with any of the second order accurate fluxes constructed in the previous sec
e.g. ,fA]LiFlgm, fii?; decomposed into its upwin@-) and downwind —) components. We
instruct a third order accurate flux by interpolatiky” (x), see [19], at(Xj_1/2, Xj+1/2)
and two more points. The three candidates invokyes, 2, Xj_z/2, Xj—1/2, Xj+1/2), (Xj—3/2,
Xj—1/25 Xj+1/2, Xj+3/2), (Xj_l/g, Xj+1/2, Xj+3/2, Xj+5/2). Construct the three cubic inter-
polants. The divided difference tables fdr* can be obtained from those défas in [19,
Eq. (11a, b)]. We repeat the formulae here,

1
Hi[xli%,XH%] —E(f[U(X|)]:i:O{J+1U[X|]) (32)
HE X 10 X t] = 1 }(f[u(x|) U] £ ey aulX, - X))
k+1 2
(33)
whereH|[x,, ..., X,4k] is the usual Newton coefficient.

Thus (H*)/(xj_1/2) is approximated by a convex combination of the three quantiti
gotten through this interpolating procedure. Again we take the closest convex combine
to our f{52 (or 752, if aj.1)2 is a fixed constant independent jf

We, of course, do the analogous thing 6t ~)'(Xj+1/2). Then we add the two approx-
imations and get our fluxfj;5;3 or f1i5,. Here we chosen =1, a;=0.7,a3=1 for
component-wise convex ENO schemes; ane- 1, o, = 0.5, a3 = 1 for field-by-field con-
vex ENO schemes. This is similar to the weighting used in [17] to avoid the local los:s
accuracy.

Systems are approximated component by component for these convex ENO sche
Multi-dimensional problems are done dimension by dimensiohlfy dimensional spitting
and the third order accurate TVD spdiétime discretization introduced in [19] is used. Fol

completeness we present the time discretization algorithm, following the notation of (Z

q® =q"+ AtLa(Q")
3 1 1
@ — Zg"+ Zg® &+ ZAt @
a® = 70"+ 297 + 2AtL(qV) (34)

1 2 2

1l Zg" 4 Zg@ + ZAtL(g@).
"t = 2q"+29% + ZAtL(q®)

This completes the construction of the third order accurate component-wise and f
by-field convex ENO schemes.

Clearly, we can construct higher order convex ENO based schemes this way. We
investigate this in the future.
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4. NUMERICAL RESULTS

All of our one dimensional problems are to be solved fer9< 1, t > 0. The first scheme
tested is our 3rd order accurate component-wise convex ENO scheme using the min
limiter at the second order step (unless we indicate a different choice of limiter). We call t
the component-wise convex ENO scheme. The second scheme is our 3rd order acc
field-by-field convex ENO scheme for which we use the UNO limiter. We call this th
field-by-field convex ENO scheme.

ExamPLE 1. We begin with a test problem due to Engquist (private communication)

Ui + AUy = 0, (35)
whereU = (%) andA= (} J).
Our initial data are
ui(x,0) =1, O0<x<1
(36)
(X, 0) — 1, 0<x<05
2% =0 05<x<1

We take periodic boundary conditions. In Figs. 1a—1b we present the numerical results
tained by using our component-wise convex ENO scheme, first by using the minmod lim
at the second order step, second by using the superbee limiter at that step. Unsurprisi
the superbee limiter gives somewhat sharper results, but the profiles are non-oscilla

a
= Linear, T — O.9 tinear. T = O.6
Eil % = il
v S B J ool IO i
- - ot
SRS NN el B PO ] ol TFoo ]
S B T o 4 ok U 4
=mrelb B S N mowel b T
By oL ]
§ 1.4} - T § O.a [
B O S S ol |
-+ I+ =
b b [ P e D S
R L ¥
S S . — P U S
h ] -:- 1‘ o E
i=] . (=] o.s
AN =1/100, Sfl=0.5 Ax=1/100, cHil=0.5
= b Linear, = O. e 1 Linear Oo.9
-
P R U S T, ool T
veb e P R
RO S O SN N oz b Lo
§ P S A g o.e S .
B O A S ol
s 0L S Y IO
B S J N o.a b .
P R B PP U P
b B .1 e
ks, o b o
< =1/ gos ofl=0.5 hs =1/ go? SO 5
FIG. 1. (a) The 3rd order component-wise CENO, mimmod limiter, Engquist example. (b) The 3rd ord

component-wise CENO, superbee limiter, Engquist example.
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Sod, Density, T= 01644
Lax, Density, T=0.16

: : : H : 14 T T T T T T T T T
I8
. +.. ceeied
E
N
Pk
o S
L. i oo B .. ...d
03 *
02 asrooens o —
01 SO S S S i e 02 I S SN S U S S DU
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 08 1§
&=17200, cA=0.95 11200, 1=0.95
Sod, Velcity, T=0.1648 Lax, Velociy, T= 0,16
1 L 18 T g7 T 7T — T

: j{ I : IS S SN SN N S S N YO
0.1 0.2 03 04 05 0.6 07 08 0.9 0 01 0.2 03 04 05 06 07 08 09
@x=17200, cf=0.95 dx=17200, c=0.95
Sod, Pressure, T=0.1844 Lax, Pressure, T=0.16
T T T T T

3
1
02F
: : ft
: : : E : : H : : : N
01 i 1 H 1 H 3 05 i H H H i i i
0.1 02 03 04 05 06 0.7 0.8 09 1 0 0.1 02 03 04 05 06 07 08 08 1
dx=1/200, cf1=0.95 dx=1/200, c1=0.95

FIG. 2. The 3rd order component-wise CENO, minmod limiteft, Sod problemright, Lax problem.
(in the primitive variables) in both cases. However, we warn the reader that our result
the Euler equations of gas dynamics using the superbee based third order method a

satisfactory.
Next we consider the one-dimensional Euler equations for a polytropic gas,

U+ FU)x =0,
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Linear Wave, Density, T =0.3
r v v T

[ (IR} 02 03 o4 05 el
=100, di=0.5
Linaar Wave, Valocily, T =0.3
i T ' ! : T 4 i i :

L] o1 02 03 04 05 06 07 08 08 1
de=1/100, di=0.5

Linear Wave, Prassure, T =0.3

0.6 i

H i i i i
o 01 02 03 04 05 06 07 08 08 1
dx=1/100, ch=05

FIG. 3. The 3rd order component-wise CENO, minmod limiter, isolated contact discontinuity.

where
0 m
U=|m]|, FU)=| pu?+P (37)
E UE+p)
with

_ 1 2
P—(y—l)(E—épU)



CONVEX ENO SCHEMES 13

and
m= pu
with y = 1.4 for air.
We next consider six different initial value problems.

EXAMPLE 2. Sod’s Riemann problem. Initial data are

p (1,0,1)T, x <05
(0.1250,0.1)7, x > 0.5.

P

Lax’s Riemann problem. Initial data are

p { (0.445 0.698 35287, x <05
u

5] 105005707, x=05

The numerical results using the component-wise convex ENO scheme are shown in F
There is a bit of smearing but no significant oscillations.

ExaMPLE 3. Isolated Contact Discontinuity. Initial data are

p (1,1,027T, x<05
u
P (2,1,02)7, X > 0.5.
Itis gratifying to note that our component-wise convex ENO scheme yields a clean ju
in p, with u and P remaining constant, Fig. 3.

ExaMmPLE 4. Shu—Osher sine wave hitting shock. Initial data are

P { (3.8571432.62936910.33333", x <05
u =

P (1+0.2%sin(50x — 25),0,1)T, x> 0.5.

The numerical results using the component-wise convex ENO scheme are displ
in Fig. 4. Amusingly, they are very similar to those obtained by a TVD scheme us

Shu-Osher, Density, T = 0.18

M 1 A i L " i i
] 01 02 03 04 05 0.6 0.7 08 0.8 1
dx=1/400, cN1=0.95

FIG. 4. The 3rd order component-wise CENO, minmod limiter, Shu—Osher problem.
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WC, Densty, T = 0.01 WC, Donsity, T = 0.027
T T T T

T T a T T
: * :
. H .+

T T T ¢ T H T

o i i i i
o 0% 02 03 04 0S5 a6 07 08 09 1 0 01 02 03 04 05 06 07 08 08 1
chx=1/400, cli=0.95 x=1/400, cil=0.85

WG, Volocty, T =001 WG, Valocly, T =0.027

s
~

N
&
\\

1 H H i H i H i H i ~ H i ; H s
[ 0.1 02 03 04 0.5 06 (1% 08 0.8 t ] 01 0.2 03 04 0.5 06 [1%] 08 0.9 1
dx=1/400, ci=0.96 dx=1/400, dii=0.05
WC, Prossum, T=0.01 WG, Fresswre, T20.027
T T T T T T T T 2 T T
+
P

] 01 02 03 04 05 086 07 08 09 1 0 01 62 03 04 0S5 08
x=1/400, oft=0.06 dx=1/400, cfi=0.95

FIG. 5a. The 3rd order component-wise CENO, minmod limiter, Woodward Colella “Bang-bang” problem.

field-by-field limiting. This is a case where a different limiter for the second order scher
gives improved results. See Example 10 below.

ExampLE 5. Woodward—Colella problem. Initial data are

(1,0,1000T, x <0.1
ul=<@o000nT, 01<x<09
(1,0,1007, x>0.9.
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WC, Densly, T =0.00 WC, Density, T =0.038
T

A}

3

&

&
+
-

i
¢

n

[} o1 a2 03

04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 03 1
xa1/400, cl1=0.95 eal400, cit=0.95 -
) WG, Velocly, T =003 WG, Volochy, T=0.008
12 / 1 A
10 M
8 /’ *: 10|
¥
7 /' 8 s g
/ ; N
/ G
2 ] / / {
+ l/ ’!
) / . i .
0 01 o0z 03 04 05 06 07 08 08 1 0 03 02 03 04 05 06 07 08 09 1
@x=1/400, cli=0.95 /400, cl1=095
WC, Prossur, T 0.0 WC, Prossura, T = 0.008

i
: ;!
. j

a7 08 08 1 L] 0.1 02 03 04 05 06 OT 08 09 1

(4 01 02 03 04 05 05
dxa1/400, f1-0.95 dx=1/400, cf1=0.65

FIG. 5b. Same layout as Fig. 5a.

Reflecting boundary conditions are applied at both ends. Thenumerical results usin
component-wise convex ENO scheme are displayed in Figs. 5a-5b.

ExamPLE 6. Low density and internal energy Riemann problem. Initial data are

P (1,-2,047, x<05
u
P (1,2,047, x > 0.5.

The results using component-wise convex ENO scheme are displayed in Fig. 6. We
that the density and internal energy stay positive during the computational process. Tl
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Low Density, Density, T=0.1 Low Density, Velocity, T=0.1
- — ; F 2 -
+ : +
08} SN g
+ + 1 .......................................
06t :_ ........ ........ _:' ..........
-: : :— Of el
04 ........... ‘% ..... ...... :E: ........... '
+ : £ Al TR
02F e -l-f- ..... B _ii_- ............. 1 F
0 W -2 :
0 0.5 1 0 0.5 1
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0.4 .
W W 2 W
03l AR SRR S
+ +
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O R
01 ............ _.!_!-'- ...... , ...... -ii!_ ............
0 M ;
0 0.5 1 0 0.5 1
dx=1/100, cfl=0.75 dx=1/100, cfl=0.75

FIG. 6. The 3rd order component-wise CENO, minmod limiter, low density, and internal energy Riema
problem.

often not the case in the numerical approximation of this problem, in particular for hi
order accurate schemes.
Now we test the accuracy of our third order schemes using the scalar linear problerr

Ut +uy =0,

with initial data (i)u(x, 0) = sin(27x), and (ii))u(x, 0) = sin*(27x). This problem is scalar
and hence the component-wise and field-by-field versions are the same. The nume
results are presented in Tables 1a—1d. This scalar convex ENO scheme achieves 3rd
accuracy inLj.
We consider two dimensional gamma law gas dynamics
Ut + Fi(U)x + FZ(U)y =0,
where
U=(p.mn, E)
F1(U) = (m, pu? + P, puv, u(E + P)T
F2(U) = (n, puv, pv?>+ P, v(E + P)T



TABLE 1a

Order of Accuracy of 3rd Order Schemes

v, =07 u(x, 0) = sin* (27 x)
Number of points Errorin OrderinL ., ErrorinL, OrderinL,
20 0.130819466 0.055802221
40 0.0222620419 2.55 0.00953868089 2.55
80 0.00720796238 1.63 0.00282921296 1.75
160 0.00264176553 1.45 0.000576823613 2.29
320 0.000787931253 1.75 0.000100661167 2.52
640 0.000166322806 2.24 1.3538874E-05 2.89
1280 4.86872147E-05 1.77 1.68882089E-06 3.00
2560 9.01723357E-06 2.43 2.26444779E-07 2.90
5120 3.5638503E-06 1.34 3.06878812E-08 2.88
TABLE 1b
v, =05 u(x, 0) = sin*(2rx)
Number of points Errorin o OrderinL ErrorinLy OrderinLy
20 0.126124154 0.0530393427
40 0.022317815 2.50 0.00930882882 2.51
80 0.00728537803 1.62 0.00233205651 2.00
160 0.0019271098 1.92 0.000375342064 2.64
320 0.000362526046 2.41 4.22597014E-05 3.15
640 6.54882088E-05 2.47 5.03039299E-06 3.07
1280 1.36249773E-05 2.27 6.25751426E-07 3.00
2560 2.94348851E-06 221 8.8273046E-08 2.83
5120 1.16642682E-08 7.98 2.40427676E-09 5.20
TABLE 1c
v, =07 u(x, 0) = sin(27x)
Number of points Errorin o, OrderinL ErrorinL, OrderinL,
20 0.00510279146 0.0031972175
40 0.000616006547 3.05 0.000396621479 3.01
80 7.63561049E-05 3.01 4.91735717E-05 3.01
160 9.55266342E-06 3.00 6.11659336E-06 3.01
320 1.19432595E-06 3.00 7.62527964E-07 3.00
640 1.49299927E-07 3.00 9.51844875E-08 3.00
1280 1.86627503E-08 3.00 1.18896482E-08 3.00
2560 2.33285924E-09 3.00 1.48567948E-09 3.00
5120 2.91606295E-10 3.00 8.33867107E-11 4.16
TABLE 1d
v, =05 u(x, 0) = sin(2x)
Number of points Errorin o OrderinL ErrorinL, Order inL,
20 0.00506666592 0.00319841808
40 0.000614441418 3.04 0.000396622292 3.01
80 7.63561049E-05 3.01 4,91735717E-05 3.01
160 9.55266342E-06 3.00 6.11659336E-06 3.01
320 1.19432595E-06 3.00 7.62527964E-07 3.00
640 1.49299927E-07 3.00 9.51844875E-08 3.00
1280 1.86627503E-08 3.00 1.18896482E-08 3.00
2560 2.33285924E-09 3.00 1.48567948E-09 3.00
5120 2.91606295E-10 3.00 8.33867107E-11 4.16
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Density, T=0.2

0.5F

1
0 0.5 1 1.5 2 2.5 3 3.5 4
Stepsize dx=1/120, dy=1/120, dt/dx=0.02

Pressure, T=0.2

0 0.5 1 1.5 2 25 3 3.5 4
Stepsize dx=1/120, dy=1/120, dt/dx=0.02

FIG. 7. The 3rd order component-wise CENO, minmod limiter, Double Mach reflection.

P=(y— 1)<E - ;p(u2+v2)>
m = pu

n= pv.

ExampLE 7. Double Mach reflection. A planar shock is incident on an oblique wedge
a 60 angle. The test problem involves a Mach 10 shock in air. The undisturbed air ahea
the shock has density of 1.4 and a pressure of 1. We use the boundary conditions desc
in [21]. The flow at timet = 0.2 is plotted in Fig. 7 withAx = Ay = 35, At=1 x 1074
The numerical results using the component-wise convex ENO scheme are plotted ir

equally spaced contours.
ExampLE 8. Engquist—Runborg example [3].

o2 Gu* G
<q1> T IV I R ) ) (38)
a2 O * 02 %

Nea+as / Vai+a /y

The system (38) represents a one-phase solution consisting of a single ray of stre
g(r,t) =+/0? + g3, located at a distanaeand an angl® = arctariq,/q,) relative to the

single point source. The system (38Weaklyhyperbolic and hence field-by-field decom-
position is impossible. The source is located-ad 2, 1) and the computational domain is
therectangle & x < 1,0 < y < 2. Theinitial data are chosen to be zero (to avoid overflov
we sefg; = g, = 1071?). We use inflow boundary conditions. In Table 2 we showed that oL
component-wise convex ENO scheme (using 4th order Runge—Kutta) works well with
loss of accuracy. ltwas reported in [10] that dimensional spitting caused a loss of accurac
this difficult problem. We successfully used our dimension-by-dimension method, see Fic
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TABLE 2
Number of points Errorin o OrderinL ErrorinL, Order inL,
20 0.0228 0.0012
40 0.0100 1.19 3.0611E-4 1.97
80 0.0038 1.40 1.0348E-4 1.56
160 0.0017 1.16 2.5525E-5 2.02
320 1.7797E-4 3.26 2.8448E-6 3.17

ExampLE 9. Cavitation Shock for Water. A shock with a density jump travels down
tube of cavitated water with = 0.99. A transition from the cavitated state to the water sta
occurs across the shock. Initial states are

left (cavitated):p = 0.99, p =2202725863533560 u =0, x <0.75
right (water): p =1.001, p=2473939%4673034 u= —524027828 x > 0.75.

A uniform mesh is applied with 400 cells and a cell widthaat = 1/400.
The problem terminates before the left boundary can influence the solution. Inflow «
ditions are applied at the right boundary. The Euler equation for water is

pt+my =0
m + (M?/p + P)y = 0.

Engquist-Runborg, T = 0.85

1.5¢

ey

o
tn

dx=1/80, cfl=0.5

0.25

0.2 suean

0 0.5 1 15 2 0 0.5 1
Onx=0.2 Ony=1

FIG.8. The 3rd order component-wise CENO (4th order in time), minmod limiter, Engquist—-Runborg wea
hyperbolic problem.
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FIG. 9. The 3rd order component-wise CENO,

Shu-Osher, Density, T = 0.18

minmod limiter, Cavitation Shock for Water.

0 t 1 1 t i | | i |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
dx=1/400, cfl=0.95

FIG. 10. The 3rd order component-wise CENO, Arora—Roe limiter, Shu—Osher problem.
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FIG. 11a. The 3rd order field-by-field CENO, minmod limitdeft, Sod problemright, Lax problem.

The equation of state for water is chosen as

B((p/po)’ =D+ A if p>pc

Pe) = Pe otherwise
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FIG. 11b. The 3rd order field-by-field CENO, minmod limiter, Woodward Colella “Bang-bang” problem.

where y=7.15, A=10°, B=331x10, po=1 p.=0.99995775, andp.=
2202725863533560. Notice that (b)p) only depends op, hence conservation of energy
is omitted in the Euler system. (2) When cavitatgd< p¢), the pressure is a constant,
hence the sound speedranishes, and there is only one linearly independent eigenvect
(1, m/p)T. Therefore when water is cavitated the Euler system is weakly hyperbolic. Her
a strict field-by-field decomposition is impossible. Figure 9 shows the excellent numeri
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FIG. 11c. The 3rd order field-by-field CENO, minmod limiter, Woodward Colella “Bang-bang” problem.

results of our 3rd order component-wise (using Lax—Friedrichs flux splitting) convex EN
There is no significant oscillation.

ExampLE 10. Shu—Osher redone. We repeat Example 4, this time using a new limi

o) = max<0, min (ir 1+A+v)r—-1)/3,2/(1— v))>
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Shu-Osher, Density, T =0.18

1 1 1 1 1 1
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N S .

FIG. 11d. The 3rd order field-by-field CENO, minmod limiter, Shu—Osher problem.

designed by Arora and Roe [1]. We chase-0.75 below. We base our component-wise
convex ENO scheme on comparison with tﬁte_ﬁé flux. Figure 10 displays the results.
They appear to be comparable (using much less effort) with those of the third order field-
field ENO scheme. However, this component-wise convex ENO scheme will yield somew
oscillatory results for the other one dimensional test problems described here.

Thus, at this stage we recommend thﬁ{tf/”z‘m be generally used for the component-wise
methods—this is safe, but a bit smearing. Future research is needed along these lines

Finally we show numerical results of our 3rd order accurate field-by-field convex EN
in Figs. 11a-11f. We have found that the component-wise version of our convex El
scheme is twice as fast as the field-by-field decomposition versieadhdimension in all
numerical experiments graphed below.

5. CONCLUSIONS

We have developed a very simple to implement and robust family of third order accur
convex ENO schemes. Their component-wise version does not use a field-by-field dec
position or staggered grids and still performs well. We have tested them over a wide rang
by now, standard canonical problems. The results show no significant oscillations. Furt
more the schemes preserve features quite well. See, for example, the densit§.@38
in Fig. 5b (component-wise calculations) as compared with the field-by-field results
Fig. 11c. Resolving the peak on the right appears to be difficult for other component-w
schemes—see, e.g., [10, 15]. The component-wise calculation was twice as fast in
dimension, which is typical.
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FIG. 11e. The 3rd order field-by-field CENO, minmod limiter, isolated contact discontinuity.

We have extended the standard ENO interpolation procedure to a convex ENO dec
process which appears to have some advantages of simplicity and performance ove
traditional ENO methods.

The method appears to be easy to extend to an arbitrarily high order of accuracy
shall investigate this in the future.
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FIG. 11f. The 3rd order field-by-field CENO, minmod limiter, low density, and internal energy Rieman
problem.
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